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Abstract

Despite many improvements and the development of safer programming
languages memory corruption vulnerabilities, such as buffer overflows are
still prevalent in current software. Attackers abusing memory corruption
vulnerabilities most typically target control structures that govern the path
of program execution. To counter this threat, in recent years, control-flow
integrity techniques have been introduced, in an effort to mitigate cor-
ruption of these critical data structures. This is achieved by constraining
the execution to valid paths calculated at compilation-time. Unfortunately,
control-flow integrity techniques do not prevent memory corruptions in the
tirst place and thus have no impact on attacks targeting non-control-flow
relevant data.

This thesis evaluates the attack surface offered by dynamic memory alloca-
tors and demonstrates using the example of two popular implementations—
ptmalloc and jemalloc—how the corruption of heap management structures
(non-control-flow relevant data) can still be used to hijack the control-flow.
To evaluate the security, this thesis proposes an approach that is capable of
comparing heap implementations with regard to their resistance against
memory corruption attacks. Then, the design of a POSIX compatible heap
measurably improving security is presented. Security improvements are
achieved by separating user-controlled allocated buffers from management
data and severely limiting the type and amount of heap management infor-
mation that traditional implementations place close to allocated memory
under attacker control.

Depending on allocation characteristics such as size and order, the per-
formance of our proposed heap implementation is competitive with the
standard malloc implementation used by glibc on Linux, achieving 83
percent of its performance on average. Overall we conclude that dynamic
memory allocators can be made more resistant against memory corruption
attacks while still maintaining reasonable performance.
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1 Introduction

This section starts by motivating the work done in this thesis by showing its relevance
even in the presence of modern protection mechanism. Then the contributions done in
this thesis are listed.

1.1 Motivation

One of the ways attackers can alter the behavior of applications is through exploitation
of memory corruption vulnerabilities. These memory corruptions vary in form, location,
and additionally may constrain the type of the data attackers might use during their
attack: For example, from an attacker’s point of view, the POSIX gets function offers the
possibility of an arbitrary length buffer overflow, but stops at the first occurrence of a
newline (ASCII 0x0a) character (therefore constraining the usable data bytes during an
overflow to anything except a newline character). As another example, the scanf function
with a size modifier m (e.g. scanf ("%100s", buf)) with 100 being the size modifier), only
allows to write m attacker controlled bytes followed by an additional a terminating null
byte to the destination.

One famous instance of a buffer overflow being used to attack wide parts of the
internet was the Slammer worm [23]. The impact of a successful exploitation of corruptions
depends on the memory that is corrupted; even though all memory within the address
space of any computer program running on a von-Neumann architecture is equivalent, in
practice, different allocation strategies are used for different memory types. For example,
an architectural stack usually holds control flow relevant information such as a return
address, indicating where execution should continue after the current subroutine finished
executing. Consequently, if such a return pointer stored on the stack is altered, the control
flow is also altered. Such deviation from the original control flow can often be used by a
malicious attacker to achieve arbitrary code execution.

Surprisingly, also the heap, which is commonly used to store dynamically allocated
data be attacked with the goal to alter the control flow. In the simplest case this is possible
due to the presence of control flow governing data on the heap. For example, the C++
language supports the concept of class inheritance. Inheritance is implemented by modern
compilers in such a way that they store a pointer to a function pointer table so that
dispatches of virtual function calls find the exact function to execute. Again, these data
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structures could be overwritten by a malicious attacker and could then be abused to alter
the control flow.

To combat corruption of these control structures, control flow integrity (CFI) mecha-
nisms can be employed. For example, one mechanism that found its way into modern
compilers is a Shadow Stack implemented by the clang compiler. This shadow stack ensures
that after the execution of each function, control flow eventually returns to the point di-
rectly behind the dispatching call. Furthermore, clang-cfi tries to rearrange virtual function
pointer tables in such a way that corruptions thereof resulting in type confusions can
be recognized by the runtime environment. The goal of CFI is to constrain the control
flow to only take control flow transfers that are part of a statically verified control flow
graph created ahead of execution [1]. This prevents attacker from injecting a forged virtual
function table since the control flow transfers described by these tables are not part of the
execution tree. The shadow stack on the other hand does not protect function dispatchs but
rather control flow transfers returning from functions. The call stack is build in memory
seperated from the local variables and thus are unreachable by buffer overflow attacks.
Attacker therfore cannot overwrite these addresses and hijack the control flow.

Unfortunately, the protection offered by current CFI mechanisms however are incom-
plete, as they aim to counter only attacks targeting control structures and do not prevent
memory corruptions in the first place [7]; modern compiled computer programs offer a
plethora of control flow relevant data structures rather than just virtual function pointers
on the heap or return addresses on the stack. These control structures are valuable targets
in context of a memory corruption attacks. One such example of a control flow relevant
data structure is part of the mechanisms used to enable dynamic linking: Due to address
space layout randomization the exact position of shared libraries in memory cannot be
known at compile time. Therefore, the addresses of external functions must be relocated
and made known to any application intending to use them. To eliminate multiple reloca-
tions of the same symbol, compilers like the GNU C compiler (GCC) create a global offset
table (GOT). This table is used to hold the addresses of external symbols imported from
shared libraries. Attacks against HULL httpd, a Linux based http server, have demon-
strated that heap based overflows can be used to corrupt entries in the GOT, and that this
corruption of the GOT can be used to redirect the control flow to functions chosen by the
attacker [8]. To prevent the GOT from being altered RELRO can be used. RELRO changes
the page permissions of the pointer table to be read only, so that a malicious write access
to this table cannot succeed [9]. Nevertheless, as will be demonstrated in this thesis, there
exist many more valuable targets that can successfully attacked during the exploitation of
a heap-based buffer overflow. Based on this we aim to solve the root cause of such attacks
by proposing a new layout for a hardened dynamic memory allocator.

1.2 Contributions

There are multiple contributions done in this thesis. The first contribution is done by
analyzing the attack vectors common dynamic memory allocators present by their man-
agement structures. The heaps analyzed are ptmalloc, currently implemented as part of
the Gnu C library (glibc) that is the default C library on many Linux systems. The second
implementation dissected is jemalloc, used by the popular web browser Mozilla Firefox,
the MySQL database MariaDB and part of the FreeBSDs c library. To demonstrate lack of
security provided by these libraries, attacks are presented that elevate a buffer overflow
into a code execution attack. Before a more secure heap can be created, first a method has
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to be found that is able to compare two dynamic memory allocators. Such method is the
second contribution by this thesis. Then a heap is outlined that is able to withstand attacks
that succeeded against ptmalloc and jemalloc. This new heap is hardened sufficiently
so that exploiting its management structures cannot be used to elevate the capabilities
of attackers, by increasing the requirements needed to successfully exploit its structures.
Based on these principles a dynamic memory allocator is then implemented and compared
to ptmalloc in terms of performance.




2 Background

In this section we briefly motivate and introduce the usage of dynamic memory allocators.
Afterwards, we explain why dynamic memory allocators inherently can be attacked in
case of errors introduced by a human programmer.

2.1 Dynamic Memory Allocation

Throughout their lifetime, any application stores and manipulates numerous different
objects in memory. These can comprise global objects which remain in scope during the
program’s lifetime but also local variables with their lifetime starting at function call and
ending upon return from the same function.

But not only the lifetime of these in-memory objects varies, also the storage location can
be different depending on the type of usage. With the amount and size of global variables
being computed at compile time, the compiler is able to reserve an appropriate amount of
space in the program image itself. Functions, on the other hand, can be called recursively
such that assigning fixed memory locations to local variables would introduce corruptions
once a recursively called function tried to update its own variables. To circumvent this
problem, function calls create a stack frame and local variables are stored inside that stack
frame. This allows function calls to be recursive as each such call creates a small private
memory area for its variables on the stack without affecting local variables of the calling
function.

Apart from statically allocated global and volatile local variables sometimes program-
mer need to pass around objects of global scope with a size unknown at compilation time.
An example could be the classical doubly-linked list which should be capable of storing an
unknown amount of data at runtime. Placing such an object in statically allocated global
memory is not possible as the size is not known at compile time, neither can they be stored
in the function’s stack frame, as returning from the function invalidates such memory,
resulting in passing a reference to potentially invalid memory.

This gap is filled by dynamic memory allocators, also called program heap, not to be
confused with the tree-based data structure. The heap provides variable sized storage
via a standardized application programming interface. For example, in context of the C
programming language, the malloc function can be used to allocate memory at runtime.

Such dynamic memory allocators are implemented as libraries or part of libraries and
suffer from the same restrictions the original program suffers from—not being able to
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have variably sized buffers of uncertain lifetimes. Dynamic memory allocators solve this
problem by using operating system dependent system calls that map a chosen amount of
virtual memory into the address space and presenting an abstract view on this memory:
Allocations made by the program are then served using this, by the operating system
provided, memory. To mitigate differences between different operating systems a common
interface, the portable operating system interface (POSIX) has been created. POSIX does
not specify the way heaps can acquire memory from operating systems, but rather parts
of the API of the heap.

One caveat of dynamic memory allocation is, however, that the heap does not know
the exact lifetime of the object, so the memory cannot be freed automatically. This puts
the burden of keeping track of allocated memory on system developers requiring them to
free allocated memory when appropriate (i.e. after no part of the program logic needs the
information contained in the allocated memory). Failure to do so can come in different
variants:

First an object can get lost, possibly by overwriting the only pointer holding a reference
to it. This has no immediate impact on the application, as the memory is just not released,
and no other object can take its space. This is exactly the problem an application may
run into at some later point in time: As no other allocation can take the space of the
object, the allocator can run into the problem, that it does not have enough memory
available to server some allocation. While the heap can request increasingly large amounts
of memory from the operating system, at some point (due to physical resource constraints)
the system’s memory will be exhausted, and the allocation will fail. Unexpectedly not
being able to allocate objects can then cause problems for the program as it may be reliant
on that memory to perform necessary operations. Possible outcomes of this scenario reach
from unexpected program termination to bringing the entire system to a halt.

Second, another problem from manually freeing objects arises when the object is
freed too early, meaning there still exists a reference to the object that is in active use.
The outcome of this scenario is unpredictable, as the dynamic memory allocator may
reuse the freed object to serve other allocation request. In this case the first reference can
point to invalid memory or even different objects. Such a pointer is commonly referred
to as dangling pointer, and can cause immediate problems for the program: Accessing a
dangling pointer assumes the object types of the old and the new allocation to match with
devastating results in practice.

A third problem can arise when the same allocated memory region is freed multiple
times, commonly simply referred to as double free. While the first occurrence of the free call
does behave in the intended way, namely returning the memory to the allocator, the result
of the second call is unpredictable and depends on the allocator itself and the fact whether
the memory has already been reused. The latter case is similar to freeing the target object
too early and is not necessarily detectable by the allocator. This can also lead to an object
being freed twice, once by an erroneous free and a second time when the lifetime of the
object originally ends. In the second case, when the object has been freed and the memory
has been reclaimed by the dynamic memory allocator, but has not been used to serve
another allocation, the second free is detectable. This is due to the pointer passed to free
pointing to memory that had not been handed out by the allocator and thus the object
cannot be valid.Possible results include a call to free having zero effect, for example when
objects are managed in a bitmap, or can lead to allocating the same memory for multiple
objects or even to the corruption of allocator structures along unpredictable results.




2.2 Attacker Model

This work discusses all the scenarios painted above in context of popular allocators in
Section 3.

2.2 Attacker Model

When designing security mechanisms it is important to specify the attacker model that the
designed mechanism should protect against. This attacker model describes the capabilities
an imaginary adversary has attacking the protected application.

One prominent attacker model regarding the security of cryptographic protocols
for example is the Dolev-Yao intruder [12]. For the purpose of exploitation mitigation,
many mechanisms proposed unfortunately lack a clear specification of the attacker model
they protect against [1]. In the context of application security, meaningful capabilities
include the ability to perform buffer overflows, buffer underflows, format string attacks,
memory corruptions relative to objects on the heap or the stack. Apart from the capabilities
the attacker has, the model also specifies which knowledge an attacker has prior to
exploitation.

In context of our work mainly the knowledge about the layout of the address space is
significant to exploitation, as it allows deduction of the full addresses of attacker controlled
data or the distance between the heap and other targets of interest in memory.




3 Security of Existing Designs

Building on the definition of attacker models introduced in section 2.2 this section outlines
a method that can be used to qualitatively assess the security of different heap implemen-
tations provided against erroneous usage. Afterwards, two widely used dynamic memory
allocators are analyzed, namely ptmalloc, implemented in the glibc, and jemalloc, used
by multiple free software projects, such as the OpenBSD C standard library, the popular
web-browser Firefox, and mariadb, a mysql implementation. We conclude by identifying
flaws in these allocation mechanisms and explain their security implications.

3.1 Ranking the Security

To quantify the resistance any heap implementation offers against malicious adversaries a
method has to be created first to compare the security of two implementations of dynamic
memory allocators. We base our security measure on the strength of an attacker succeeding
to exploit a given implementation: A heap ranking lower on this measure is vulnerable
to all attackers any higher ranking heap is vulnerable to and a more secure heap has to
resist all attackers a less secure heap resist. One difficulty in finding such a measure is that
heaps could be resistant to very different attacker types. Conceivably, one design might be
able to resist all types of buffer overflow attacks, but be vulnerable to buffer underflows,
while a second heap might be exploited by buffer overflows but resist any underflow. To
our perception, neither of the designs may rank higher than the other, nor are they even
directly comparable.

This thesis proposes to directly use attacker models for comparing the security of
heaps. The goal is to rank the heaps’ security while disregarding the program utilizing
the dynamic memory allocator. For this reason it is assumed that any attacker can choose
any function of the dynamic memory allocator to be invoked with objects he chooses.
This includes the ability to read out the contents of an object and fill it with any content
he specifies. While the attacker can control the creation, their size and the destruction
of objects, he may not access invalid objects and does not know the virtual address
of the object. One can think of the attacker controlling every function call to the heap,
but all addresses are substituted by objects or object ids. An example how this can be
implemented can be found in the appendix.

In order not to test excessive amounts of attacker models to determine the security
properties of a heap attacker models can be viewed as sets of capabilities. This set of




w N

3.2 Ptmalloc

struct malloc_chunk {

INTERNALSIZE.T mchunk_prev_size; /+ Size of previous chunk (if free). =/
INTERNAL_SIZE_T mchunk_size; /+ Size in bytes, including overhead. x/
struct malloc_chunk= fd; /x double links — used only if free. =/
struct malloc_chunkx bk;

/% Only used for large blocks: pointer to mnext larger size. x/

struct malloc_.chunk* fd_nextsize; /x double links — used only if free. x/
struct malloc_.chunk* bk_nextsize;

};

Listing 1: Structure used by ptmalloc to organize allocations as implemented in glibc 2.27[15]

capabilities forms a lattice under set inclusion. The bottom element is the attacker that has
only the aforementioned capabilities of controlling the interface. The top element is an
attacker who has knowledge of the address space layout and can perform arbitrary read
and write operations in the entire address range. This attacker is as powerful as one that
has full knowledge of the address space and has the capability to read and write memory
at arbitrary offsets to objects. This is due to every exploit of the weaker attacker can be
simulated by the stronger attacker by calculating the absolute addresses he knows because
of his knowledge of the address space layout from the offsets. Any attacker with arbitrary
memory access can also skip exploiting the dynamic memory allocator and instead directly
corrupt the data one would try to get access to. With this notion of attacker models as
a lattice one can now compare multiple dynamic memory allocator implementations. A
heap A is at least as secure as a heap B iff for all attacker models B resists against A also
resist against them.

3.2 Ptmalloc

The first memory allocator under analysis is ptmalloc. This Heap is implemented in the
glibc and widely used on Linux operating systems. I will describe its design in a bottom
up mannet, starting with allocated areas of memory, then explain how free memory areas
are tracked, and finally elaborating on the top level structure “arena’ and its purpose.

Based on the size of an allocation there are three different ways an allocation can
be handled. Small allocations are handled using so-called fastbins, and especially large
memory requests are served using huge bins. All other allocations are handled with unsorted
bins. All allocations share a common structure in memory that can be seen in listing 1.
Depending on the type of chunk, its allocation state, and the preceding chunks allocation
state, fields are unused or shadowed by user data. The only field that must always be
present is mchunk_size. Apart from the size, this field also carries further information
in the form of flags. As the granularity for allocations in ptmalloc is 0x10, the four least
significant bits of the size field can be used as flags. When the chunk’s size is read, they
can simply be masked out. The least significant bit is the PREV_INUSE flag, the next one is
called IS_MMAPED flag, the third is NON_MAIN_ARENA flag, and the last bit is unused.

PREV_INUSE indicates whether the preceding chunk is allocated with the bit being set
meaning the predecessor of the current chunk is in use. This flag also has a direct impact
on the mchunk_prev_size field, as it is only valid if the bit is set, otherwise it is used by the
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Internal pointer

prev_size fd bk fd_nextsize | bk_nextsize
size

prev data data

Public pointer

Figure 1: The struct malloc_chunk residing in memory

preceding chunk as part of its user data, resulting in it being unpredictable if PREV_INUSE
being set. This mechanic saves a non-negligible amount of memory.

The flag IS_MMAPED indicates the use of the mmap system call to serve this allocation. It is
used for huge chunks that are individually mapped into memory. This piece of information
is crucial when it comes to freeing an allocation having that flag set. The main portion of
the heap is built around the sbrk mechanic that can be efficiently used to expand or shrink
the heap. Chunks that are mapped into memory via mmap are not part of the heap managed
via sbrk and therefore have to be reclaimed manually by unmapping the appropriate
address range.

Lastly, NON_MAIN_ARENA indicates that the chunk is part of an arena not being the
main arena. The main arena is the original arena created. In multithreaded environments
additional arenas may be present and this bit indicates that the owning arena must be
determined. If this bit is not set, the chunk is part of the main arena stripping away the
complexity of finding the owning arena and thus improving the performance if only one
arena is required.

While ptmalloc internally works with pointer to the beginning of the struct, as size
must always be valid and may never be overwritten by user data, the pointer returned
points to the forward pointer. This results in the field £d and all successive fields of the
struct to be shadowed by user data. Also sizes for the allocations are internally calculated,
so that user data also may shadow the prev_size field of the next allocation. The position
of the struct in memory and the potential shadowing by user data can be seen in figure 1.
Depending on the size of the chunk, free elements are handled differently. Small chunks
are grouped in fastbins, and there exists a fastbin for each chunk size smaller than a certain
threshold. These fastbins handle free chunks using a singly linked list utilizing the fd field
of the malloc_chunk struct. This allows for efficient freeing and allocating of these chunks,
and as a fastbin only contains chunks of the same size, the singly linked list builds a stack
of chunks handled in last in first out order. Free unsorted bins on the other hand store
free chunks via doubly linked lists. This is necessary as chunks in unsorted bins can be
of various sizes and upon an allocation, a chunk of the right size must be found, which
not necessarily is the first and then it has to be removed from the list. It is worth to note,
that while the singly linked list of the fastbins is terminated via a NULL pointer, the linked
list of an unsorted bin is terminated via a pointer into the arena. The main arena is part
of the libc static data, and such unsorted bins are terminated using pointer into the libc.
There also exists a special chunk, namely the topchunk. It is the last chunk on the heap
and contains the rest of the memory. It can never be allocated, there can just be memory
split of to allocate chunks. If the top chunk is too small to accommodate an allocation or
if it would be used up, the heap instead is extended via the sbrk mechanic and thus the
size of the top chunk is increased. That way it is possible to serve these allocations while
keeping the top chunk.
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prev_size

size 0x101

prev_size

size 0x101
prev_size

size 0x101
' prev_size !

Figure 2: Forced Heap layout prior to exploitation

In glibc 2.27 a further technique was introduced to dlmallc called tcaches. The idea is
to reduce contention for the arena lock by keeping a list of chunks freed per thread. By not
freeing the chunk globally, the arena has not to be locked and the chunk will not be handed
out to other allocations. This thread locally freed chunk can only be allocated by the same
thread freeing it, and it will only be used if the exact size of the chunk is requested[11]. To
enable this mechanic the thread local storage holds a configurable amount of singly linked
lists. Each linked list is assigned a size, and all elements in the list are of that size. Upon
an element being freed, it is first checked whether there exists a list for elements of that
size in thread local storage. If such list exists, and the list has not reached its maximum
depth, instead of passing the free to the arena, the chunk is prepended to the list. If no
such list exists, but not all lists are used, a new list is created and the element being freed
is prepended instead of globally freed.

There are multiple ways to exploit the heap management structures of ptmalloc[16,
25]. When heap allocations and frees are controlled, the heap layout can be forced and
overflowing a single null character can be used to escalate the exploit to remote code
execution. The exploit can be broken down into four subsections, first two chunks are
overlapped, so that access to the pointer of a free list is gained. Then the memory layout is
leaked via the pointer of the unsorted bin linked list yielding the addresses of the heap
and libc. Third, the free list is corrupted, to allocate a chunk containing the __free hook
in the libc, which is subsequently overwritten with a pointer to system. From there on
freeing an object instead calls system, with the argument being the content of the chunk,
thus freeing an element with contents “sh” spawns a shell.

There are many different variations to do each step in the exploit, so in this part my
personal flavor will be used. This variant starts with a Heap layout, like seen in figure 2.

10
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prev_size

data

size 0x100
prev_size 0x200
data

B

size 0x100
prev_size 0x100
bk

fd

size 0x101
' prev_size

Free

Figure 3: State of the Heap after overflowing B and freeing A

prev_size 0x300
data
B

size 0x100
prev_size 0x100
bk

fd

size 0x301

' prev_size

Free

Figure 4: Chunk B gets swallowed due to the forged prev_size field
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Here "A”,”B”, and ”C” are individual allocations. The size of “B” does not matter much,
but to use the full allocation and have an overflow of the allocation also overflow the
chunk, it must be of a size 0210 x n 4+ 8 where 1 < n.”A” has to be larger than 0280, so it
is inserted into an unsorted bin upon free. Additionally, to be handled by unsorted bins,
the size of ”"C” must be a multiple of 0x100. This is due to internal checks in ptmalloc that
would detect the missing header of the next allocation and abort the program. If a size
other than a multiple of 0x100 is used, overflowing the least byte will alter the size, not
only the flags. Detection can be mitigated by placing a fake chunk in the Body of "C”. First
”A” is freed, so that it is inserted into the unsorted bin list. Then from ”"B” the terminating
null byte is overflown into the size field of "C”, residing directly after "B”. While this
does not change the size stored in the size field of “C”, it overwrites its flags, clearing the
PREV_INUSE flag, indicating “B” to be free. Since management structs overlap, overflowing
into the size field also overwrites the prev_size field which overlaps the last bytes of the
buffer. It is important to not set the value of this field to the size of “B”, but rather to the
size of ”A” and ”"B” together. This brings the heap into the state depicted in figure 3, right
bevor two overlapping chunks are created. When “"C” is now freed, ptmalloc checks to
see if there are any free adjacent chunks to consolidate them into one big free chunk. By
clearing the PREV_IN_USE flag, ptmalloc recognizes that the chunk preceding "C” must be
free and uses the value stored in prev_size to find the chunk header to update its size.
Since the value of this field has been forged to contain the combined size of “A” and "B”,
ptmalloc tries to consolidate “A” with “C”, swallowing “B” in the process. It is worth to
note, that the prev_size field of "C” and the size field of ”"A” are not consistent at this
point, however ptmalloc lacks the consistency check for this scenario and assumes the size
of "A” to be equal to the prev_size field of "C”. This creates a free chunk, spanning from
”A” to ”C” embedding "B”. Allocating a chunk of the appropriate size will return this
combined chunk and yields full control over the contents of ”B”, regardless of “B” being
allocated or not, which concludes stage one of the exploit and can be seen in figure 4.

At this point, the second stage of the exploit begins, with the goal to leak the libc
address. If the attacker can perform arbitrary overflows and overreads, he could also skip
the first stage and start at this point. The newly allocated chunk, named “D”, is used
to change the embedded chunks (”"B”) size to be of unsorted bin size. One additional
requirement is that “B” is followed by two valid chunks. This can be achieved by either
choosing the size to line up with an already existing, valid chunk, or by faking them. Fakes
only need to have a valid size field, so they can be simulated by two small chunk headers.
This requirement also stems from the libc trying to consolidate multiple chunks upon free.
To detect if the following chunk is free or not, the PREV_IN_USE flag of the next following
chunk has to be read, thus two chunk header are required. Next the thread local free list
must be filled, so that all slots are taken or the list for objects with the same size as "B” is
already saturated. Then “B” is freed, and as there is no slot in the thread local free list left
to put the chunk into, it is globally freed. Because of the mechanics detailed above, "B”
will now be part of an unsorted bin, and if that linked list was empty prior, both fields,
fd, and bk contain pointer into the libc. As “B” is fully contained in “D”, “D” can be used
to read out the data from “B” even when ”B” is freed and reveals the libc address to the
attacker.

Here the third stage starts, attacker that additionally to arbitrary overflows and over-
reads already know the libc base address could begin exploitation at this point. From the
libc address leaked prior, the address of the __free_hook is calculated. This __free_ hook
is a hook provided by the libc to load a different heap implementation at runtime by
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struct arena_run.s {
/* Index of bin this run is associated with. =/
szind _t binind ;

/% Number of free regions in run. x/
unsigned nfree;

/% Per region allocated/deallocated bitmap. =/
bitmap_t bitmap [ BITMAP_.GROUPS MAX];

}s

Listing 2: Runs are used to manage the regions, which are the units of memory returned by jemalloc

intercepting the library call free and instead executing a function provided by the applica-
tion. As this __free_hook is not stored on the heap, the heap overflow must be escalated
into a write anywhere primitive to enable an attacker to write chosen values at arbitrary
memory addresses. This can be done by tricking ptmalloc to return an address specified
by the attacker when performing an allocation. The introduction of thread local free lists
simplified this task, as it misses crucial sanity checking when returning elements of that
list. This step is also possible to perform on older versions of ptmalloc but is more complex
as a valid size field is required in the correct location, which can be crafted but requires
additional trickery. First “B” is allocated again, and the size of ”"B” is changed by updating
its size field, so it is eligible for a spot in the thread local chunk list. Then it is freed, and
with it entered into the free list, the £d pointer of the chunk struct gets filled with the
address of the next free chunk of the same size. Since "D” overlaps “B”, the attacker has
access to this list and can modify the f£d pointer to point to the __free_hook, so the second
next allocation of the same size as “"B” will return the chunk chosen by the attacker that
contains the hook.

From the libc address leak in stage two the address of system can also be calculated
and the value of the free hook can be replaced by this address. Any time free is called from
then on, instead of releasing the memory a chunk holds, its contents is interpreted as a
shell command and executed by the system function.

3.3 jemalloc

The second dynamic memory allocator analyzed in the thesis is jemalloc. It was intended
to be a scalable malloc implementation for freeBSD[14] but found its way into Mozilla
Firefox and Mariadb as well[17]. The version this thesis focuses on is from GitHub!, the
latest stable version (stable-4).

Jemalloc uses a different naming scheme for its management structure then ptmalloc.
This is fine for the most part, but the chunk has a different semantic in jemalloc than it
had in ptmalloc. In the context of jemalloc the units of memory returned by the allocator
are called region. An array of same sized regions is managed in a run. The structure used
to manage these regions can be seen in listing 2. It does not only store the number of
free regions of the run in nfree, but also keeps a map where each bin corresponds to the
status of a region. If a bit is set in bitmap, the corresponding region is free. Similar to
ptmalloc, bins are used to manage runs that store regions of the same size, so that each

'https:/ / github.com /jemalloc/jemalloc/tree/stable-4
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struct arena_bin.s {
/*
« All operations on runcur, runs, and stats require that lock be
* locked. Run allocation/deallocation are protected by the arena lock,
« which may be acquired while holding one or more bin locks , but not
* vise wversa.

*/

malloc_mutex_t lock;

/*

* Current run being used to service allocations of this bin’s size
* class.

*/

arena_run_t xruncur ;

/%

« Heap of non—full runs. This heap is used when looking for an

* existing run when runcur is no longer usable. We choose the

« non—full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost—empty chunks.

*/

arena_run_heap_t runs;

/+* Bin statistics. x*/
malloc_bin_stats_t stats;

Listing 3: Bins are used to manage Runs for regions of the same size

region managed by a bin has a uniform size. Each run is associated to exactly one bin
using the binid field. There exist different types of runs that depend on the regions size.
Small runs are for object smaller than the page size, the other ones are large.

Bins also keep track of the associated runs using the runs field and keeps track of
statistics using stats. One of the runs part of the bin has a special role, as it is the run
currently used to serve allocations. When that run has been used up and no more empty
regions are available any more, it is exchanged for another, nonempty run. Swapping out
the runs in runcur happens lazy, meaning the exchange is not triggered when the last
element is taken out, but when an allocation can’t be served any more.

Many bins of different sizes are stored in an arena, the top level structure in jemalloc.
The number of arenas present in the dynamic memory allocator is configured at compile
time. Each thread can be associated to one arena, resulting in the threat using that arena
to statisfy its memory requirements. This mechanic is meant to spread the load of the
allocator over multiple arenas, and as each arena is locked individually, lock contention
can be reduced.

Arenas not only handle bins, but also do chunks. Unfortunately, the chunk in jemalloc
has a entirely different semantic from that in ptmalloc. Chunks are an abstraction to
mapping memory in the context of jemalloc. These chunks have all the same size fixed at
compile time and are aligned to a multiple of their size. When a new run must be allocated,
unused pages of a chunk are used to create the run. To keep track of all the runs that
are part of the chunk and do some additional book keeping the structure in listing 4 is
used. The node element is used to associate a chunk with an arena. While any chunk can
only be connected to one arena, arenas can be associated with any number of chunks.
The last field in the chunk, map_bits is of variable length and stores information, such as
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Arena Chunk
Metadata | Per page info
Chunk man-
agement run
bin[0] larger run
bin[1]
run
: : run

Figure 5: Design of the jemalloc dynamic memory allocator

struct arena_chunk.s {
/*
* A pointer to the arena that owns the chunk is stored within the node.
* This field as a whole is used by chunks_rtree to support both
* ivsalloc () and core—based debugging.
*/

extent_node_t node;

/*

* True if memory could be backed by transparent huge pages. This is
« only directly relevant to Linux, since it is the only supported

« platform on which jemalloc interacts with explicit transparent huge
* page controls.

*/

bool hugepage;

/%

* Map of pages within chunk that keeps track of free/large/small. The

* first map_bias entries are omitted , since the chunk header does not
« need to be tracked in the map. This omission saves a header page
* for common chunk sizes (e.g. 4 MiB).

*/

arena_chunk_map_bits_.t map_bits[1]; /+« Dynamically sized. =/

Listing 4: Chunks are used to alloacte memory to split of runs

how many pages a run spans, if it is allocated, or the pages being dirty. Missing from this
structs definition is a second array, seen in listing 5, also containing information about
each page. The map_bits array is used to keep track of the size of large allocations and
bin id of small ones. Additionally, information is stored indicating if the page is allocated,
unzeroed, dirty, or large. The meaning of bits in this bitmap can change depending on the
run being small, large, and unallocated. The secon array, arena_chunk map_misc is used
for different purposes. First it manages the heap of available runs stored an arena, but it
also contains the run header for small runs. The basic design of jemalloc is also presented
in figure 5.

The last structures important to the design of jemalloc are these, used for thread
local caching. Management structures for these tcaches are allocated using the same
mechanisms that are used for serving allocations to the user and can therefor end up
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/%
« Each arena_chunk_map_misc_t corresponds to one page within the chunk, just
x like arenma_chunk_map_bits_t. Two separate arrays are stored within each
x chunk header in order to improve cache locality.
*/
struct arena_chunk_map._misc.s {

/%

« Linkage for run heaps. There are two disjoint uses:

*
« 1) arena_-t’s runs_avail heaps.

* 2) arena_run_t conceptually uses this linkage for in—use non—full
* runs, rather than directly embedding linkage .

*/

phn(arena_chunk_map_misc_t) ph_link;

union {
/% Linkage for list of dirty runs. x/
arena_runs_dirty_link_t rd;

/% Profile counters, used for large object runs. x/
union {

void *prof_tctx_pun;

prof_tctx_t xprof_tctx;

¥

/% Small region run metadata. =/
arena_run_t run;
}i
b

Listing 5: The map misc structure is used to form heaps of available runs and to store information about
small runs

struct tcache.s {
ql_elm (tcache_t) link; /x Used for aggregating stats. x/
uint64_t prof_accumbytes;/« Cleared after arena_prof_accum (). */
ticker_t gc_ticker; /+ Drives incremental GC. x/
szind _t next_gc_bin; /* Next bin to GC. x/
tcache_bin_t tbins [1]; /% Dynamically sized. x/
/%
« The pointer stacks associated with tbins follow as a contiguous
« array. During tcache initialization , the avail pointer in each
« element of tbins is initialized to point to the proper offset within
* this array.

*/

Listing 6: Thread local caching is used to reduce lock contention even further

following another allocation. The most important part of the tcache_s struct from listing 6
is the tbins field holding tcache bins, that can be seen in listing 7.

Like the regular bins managing objects of the same size, regions handled by thread local
bins also have a uniform size. The pointer avail points to past an array of region pointer.
When memory is requested, avail is accessed at a negative index and a corresponding
pointer is returned.

Multiple attack vectors have been identified that can be used to achieve jemalloc
allocating the same region multiple times. This could be done by overflowing into the run
header or corrupting the chunks meta data. Also a write anywhere can be achieved by
corrupting thread local caches[3, 4]. To demonstrate the validity of attacking thread local
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struct tcache_bin_s {
tcache_bin_stats_t tstats;

int low_water; /+« Min # cached since last GC. x/

unsigned lg_fill_div; /x Fill (ncached_max >> lg_fill_div). x/
unsigned ncached; /x # of cached objects. =/

/*

* To make use of adjacent cacheline prefetch , the items in the avail
x stack goes to higher address for mnewer allocations. avail points
* just above the available space, which means that

* avail[—ncached , ... —1] are available items and the lowest item will
* be allocated first.

*/

void s*xavail ; /% Stack of available objects. x/

Listing 7: Thread local cache bins manage a pointer to array of regions used for allocation

caches, this thesis outlines an exploit that overwrites the hooks of an arena. For this attack
the attacker needs only to overrun buffer additional to his base capabilities, and there
have to be multiple threads present and the attacker can choose which thread is used to
perform the action.

The goal of the first stage is to leak an arena pointer and the base address of a chunk.
Conveniently both information can be found in the first sixteen byte of the chunk header,
as the content part of node. Fortunately, this chunk header is stored in the beginning of
chunks which are aligned to their size. The exploit starts by allocating a small region "A”
using the main thread. This creates a tcache_t followed by the attackers allocation. As
the attacker is restricted to overruns, this thread local caching structure is not of interest
for the attacker. A second tcache_t structure however can be allocated after “A” when
an allocation is done in a different thread. Allocating all regions of the run "A” is part
of, the last allocation will use a region adjacent to the thread local cache management
of the second thread. As seen in listing6 this structure starts with a linked list. However,
this list is not accessed when an allocation is served using the thread local mechanic. The
next three fields can be predicted or altered without consequences as well. The structure
that follows is the tcache_bin_t from listing 7 that is actually used to manage cached
regions. These tbins are ordered by size, resulting in the first one managing the smallest
possible allocations, in this case eight bytes, followed by a one that manages sixteen bytes
small allocations and so on. Before explaining which values these structures must take
after the overflow it is important to take a close look at the machanic of allocating a small
bin from a thread local cache. The field avail is used to point past an array of pointer
to regions. When a region is allocated, avail is accessed at the negative offset with the
absolute value of ncached and that pointer is returned. To get jemalloc to return a sixteen
bytes wide region at the beginning of a chunk, a pointer avail must be found that, when
accessed at negative ncached returns a pointer to that chunk. Luckily the chunk header
itself can be used for that. As the second pointer in the node field of the chunk header
also points to the chunk header, the last three bytes of avail can be overwritten to point
to the chunk header plus sixteen. Depending on the exact size of the chunk up to 7 bits
must be guessed correctly for this attack to succeed. For the version tested in this thesis
however the chunk has a size of two megabytes which results in only three bit that have
to be guessed, yielding a success probability of one in eight. When ncached is set to one,
accessing avail at index minus one will yield the second pointer from the start of the
chunk, which is a chunk pointer. It is important to use the tcache bin that handles sixteen
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bytes small regions for this trick as this will then leak both, the arena pointer and the
chunk pointer. The first tbin entry is trashed by the continues overflow. This however
does not matter if no object of the smallest size is allocated by that thread.

The second stage builds on the first stage, as it uses the same overflow to further
modify the thread local cache. As the absolute address of a chunk is known, that chunk
can be sprayed with addresses pointing to the hooks of the arena that was leaked. When
avail is overflown to point into the leaked chunk and hits one of the sprayed pointer,
the hook array of the arena will be returned. The attacker now must fill the chunk with
function addresses he likes to call and when chunks should be created or destroyed, the
attacker defined function will be executed instead. It is worth to mention, that this is still
less comfortable than overwriting __free_hook in ptmalloc, as jemalloc hands a pointer to
a chunk as the first argument, not a pointer to a region.

3.4 Security flaws

Now that the ways memory is managed has been explained, it is possible to deduce
weaknesses in the security of these dynamic memory allocators.

3.4.1 Not detecting invalid free calls

Trying to free some object that is invalid is a sure indication, that the program encountered
some error. This error can be relatively harmless, such as a random bitflip in non error
correcting ram. Other times, this error is the result of a logic error or even the result of an
attack attempting to corrupt the state of the heap. The challenge for the dynamic memory
allocator is to correctly deduce whether the object about to be freed is valid or not. There
are multiple reasons why an invalid object may be passed to the allocator to be freed.
Objects that are not returned from the allocator, such as pointer to global or local variables.
The object is also invalid when it has already been freed. The danger in these cases does
not only lie in the invalid call to free, but also in the existence of a pointer to a freed object,
a dangling pointer.

It is important to catch these invalid free calls, as they can be used by attackers to
perform memory corruption attacks and even in when not attacked, undefined behavior
may occur. Unfortunately, jemalloc compiled in the release configuration does just assume
the validity of the object and thus is totally unable to detect any form of invalid or even
malicious call to free.

For ptmalloc, detection of these erroneous calls heavily depends on the object being
freed and the current state of the heap. There is one requirement an object must always
fulfill for the free call to accept it. It must be preceded by a valid chunk header, which
in the most basic case boils down to an aligned size field. If the object can be put in one
thread local free list, then there are no further checks performed, otherwise chunk header
around the object must be consistent as well. Is the object of a small size, thus handled by
the fist bin, the chunk must not be the same as the head of the free list of the fast bin.

A recent addition to glibcs ptmalloc were thread local caches. These tcaches aim to
improve the performance of the heap by not freeing the memory globally and thereby
dropping the requirement of locking the main arena[11]. Two threads could attempt to
free the same object. While this is detectable by ptmalloc when no thread local caches are
employed, it becomes undetectable if one of them can cache it thread locally, independent
of the order of both frees. Thread local caching, implemented as in ptmalloc, results in
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an inconsistent few of the heap state by different threads. The thread caching it, sees the
chunk as being free, while it is still allocated for the other one, so the second thread may
still free it without raising a heap error.

3.4.2 Leaking memory layout

Address space layout randomization (ASLR) was introduced to significantly increase the
difficulty of successfully exploitation by adding entropy to the virtual addresses of libraries,
stack, and heap. Since the introduction of position independent executables (PIE), also the
virtual address of the program image is protected. While older systems with a small virtual
address space, such as x86 do not provide enough possibility to randomize addresses,
systems with a 64 bit addresses space render attacks relying on guesses infeasible[30].
Saving pointer into other memory regions in locations accessible to the attacker provides
an information leak vulnerability. Ptmalloc for example terminates its unsorted bin free
lists using pointer into the arena. This address is also not necessarily cleared when the
chunk is later acquired via malloc. For jemalloc, addresses to the main arena are stored in
the meta data stored in the beginning of areas that encapsulate allocations.

As ASLR works on modules, these information leak vulnerabilities enable attacker
to deduce the virtual address of any other symbol part of the same module. This knowl-
edge can be used to increase the attack surface, as memory corruption attack can target
additional symbols. The glibc for example uses the __free_hook so that applications can
load their own heap implementation. As soon as the base address of the glibc is learned,
the address of the __free_hook can be deduced. When the hook is not equal to NULL, it is
interpreted as function pointer and called with the original argument provided to free.
Corruption of this hook gives a convenient way of redirecting the control flow to an
attacker defined address.

3.4.3 Missing overflow detection

Jemalloc allocates objects of the same size in runs that are arrays of allocable regions.
In these runs no additional data or probes are inserted in between any two allocations.
This makes detecting buffer overflows by the heap impossible. Ptmalloc stores the size of
the allocation in front of the user data. This additional data does not provide significant
entropy, especially to attacker able to influence allocations oh the heap. If an attacker
knows the size of the object he tries to overflow into, he can compute the size field and
overwrite it with its original value, hiding the overflow from the heap. Additionally, this
size field proves to be an additional attack vector that can be used to alter heap behavior.

3.4.4 Heap management in predictable locations

The next security weakness jemalloc and ptmalloc have in common, is the possibility to
predict the location of crucial heap management structs. Ptmalloc manages free elements
of the heap by reusing the space of free chunks. While this makes efficient use of memory
that is not allocated by the program, it also makes these structures accessible to attacker
that can overflow the chunk or control its contents by other means. While jemalloc does
not reuse its regions to store control data, it is laid out to have metadata in the beginning
of each chunk. Stored in this metadata are not only the bins, but also information about
the individual runs, and the arena the chunk is linked to. Not only is the position of the
chunk header predictable, but also the structures used for thread local caching of regions.
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These structures are allocated using the same allocation primitives as used for serving
the programs allocations. This results in these thread local cache management structures
ending up next to user allocations and being targetable by buffer overruns.

Using buffer overflows for ptmalloc or relative read write vulnerabilities, such as out
of bound array access could grant an attacker access to these structures. When the control
data stored there is modified, the attacker could force the heap to return invalid objects or
alter the behavior in some other way. But not only corruption of these control structures
poses a risk for the heaps safety, but the data stored there is also rich in information.
Ptmallocs linked lists and jemallocs arena pointer and current run pointer for example
leak heap and library addresses. As mentioned before, this information can be used to
increase the attack surface and target other libraries or parts of the same library that have
a large impact on the flow of execution.

3.4.5 Function hooks

Built into ptmalloc are multiple function hooks that can be used to intercept different
common allocation and deallocation functions. The purpose of these hooks is to grant
programs the ability to install custom dynamic memory allocators. Apart from using
hooks there also exists a second technique to use a custom heap. The glibc exports all
its dynamic memory allocator routines as weak function symbols. This indicates to the
loader, that these symbols may be shadowed by other libraries and applications. This
allows a program to replace the default heap implementation provided by glibc without
the need for writeable function hooks. While jemalloc does not has hooks for the basic
memory allocation and deallocation functions, it has hooks that govern the allocation and
deallocation of chunks. These hooks are part of the arena and thus have read and write
privileges.

These function hooks come with major risks. These hooks grant attacker a simple way
to hijack the control flow and execute arbitrary code. It has been shown, that with minor
constraint a single call into the glibc is enough to spawn a shell[26]. There even exist
tools that search for these so called “one gadgets”?. To make matters worse, hooks like
glibcs __free_hook are very hard to cover via control flow integrity checks. These hooks
are meant to be overwritten by arbitrary functions not part of the original control flow of
the library. No control flow graph can be computed when the library is compiled as the
function that is used for the hook may not even been written yet.

3.4.6 Allocate anywhere possible

The last vulnerability identified is the possibility to force the dynamic memory allocator
to return any attacker defined address when allocating an object. Ptmalloc uses linked
lists to keep track of free chunks on the heap. When an attacker manipulates a node of this
list he can introduce new objects into the free list that may not be valid. In case of tcaches
or chunks handled by fast bins, this list is only single linked, and a partial overwrite
can be enough to alter the location of future allocations. When the absolute address of a
target is known, getting the heap to perform an allocation at that target is easily forced by
overwriting the next pointer of a thread local cached free list.

It is important to notice, that the returned chunk can lay outside of the heap and any
area ptmalloc manages. In the case of jemalloc, thread local caches can be used to achieve

*https:/ / github.com /david942j/one_gadget
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an allocate anywhere primitive, as demonstrated earlier. Thread local caches are managed
using the same allocation mechanism as exposed to the program itself, which results in
these structures being adjacent to user allocations. As the content of these structs is trusted
blindly and they contain addresses that are handed out in future allocations, altering these
pointers will result in jemalloc return regions at any address.
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To help understanding the design of the Secure Heap and the Leap, both use the same
terminology as ptmalloc. A chunk is conceptually the smallest unit and is the memory
returned by an individual call of malloc or a similar function. Chunks are logically grouped
by bins, and many bins make up the arena. Both the secure heap and Leap consist of only
one arena, so all bins are implicitly grouped in the main arena and further explanation of
the arena is omitted.

In order to avoid flaws made by other dynamic memory allocator implementations, as
described in section 3, we have to put special emphasis on some parts of the Design. This
section will describe one secure heap implementation and show its security properties
and also its infeasibility. Then with relaxed constraints a second heap will be designed
and implemented.

4.1 Secure Heap

For a heap to be secure, the heap must not have any of the flaws listed in section 3.4.
Avoiding these structural problems is the most important part in the design of the secure
heap. Runtime overhead and memory consumption on the other hand are of no concern
for this dynamic memory allocator.

The main design principle used for the secure heap is to strictly distinguish between
the memory space used to manage all the internal data used by heap, and the memory
that is handed to the executable program or other libraries. A boundary is created by
limiting the type of information that can be stored by the memory management in areas
that are used to serve allocations. Any Information that can be used to deduce the address
space layout or to alter the internal state of the heap may never be stored in these areas of
memory. And any information that is stored in band with the allocations has to be checked
for validity to prevent attackers from altering this information. This strict segregation
entails that when the heap itself requires dynamic memory it may not use the same
routines that are used to serve the allocation of the program. Managing of allocations
can be seen in figure 6. Allocations are tracked via a linked list and pointer are checked
on free to see if they were the exact pointer returned by malloc. There is no information
stored in the memory area returned by malloc and additionally a guard page with no
access permissions is created following the allocation. Any two allocations are completely
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allocation list ——| allocation ——— —— allocation
Information
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data guard o data guard

Figure 6: Design of the Secure Heap

separate in the sense, that they do not share the same mapping and there is no cross
reference or dependency between these two.

To circumvent the problem of dangling pointer it is important to detect access to objects
that lie outside of the lifetime of that object. The problem is to detect these accesses as they
can look like a valid access to a different object residing at the same place in memory. One
solution could be to search for pointer to every object being freed and only successfully free
the object when no such pointer is found. This however is an impossible to solve problem
as pointer are indistinguishable from integers that have the same value by chance[27]. The
Secure heap circumvents this problem by never reusing memory and setting the memory
protection of freed objects to be not accessible. From this decision rise two new problems
that are connected. First memory protection can only be set on page granularity resulting
in adjusting the size of the allocation to the next multiple of the page size. Not increasing
the allocation size would result in multiple allocations on the same page and changing the
protection status of that page would also result in loosing read write access to the other
allocations. The second problem has an even bigger impact on the memory usage as not
reusing allocations leads a memory leak. The pages have to remain mapped to prevent the
Operating System to reuse the addresses in further memory requests, however they don’t
need to be backed by physical memory. Assuming the program creates a infinite series of
mallocs and frees, this will result in virtual address space to be used up and at some point
in time no more memory allocations by the program can be served any more.

This design allows the Heap to detect calls to free passing invalid objects, since the
reference has to be part of the list of allocations. When the object that is attempted to be
freed is in that list, the passed reference is valid and if not, it is invalid. Freeing the object
requires searching for the element in the list and if none is found the invalid parameter is
detected and the program is terminated.

The strict segregation between management structures and user data avoids multiple
problems at once. No information about the address space layout is leaked as no pointer
or any value derived from one is stored with an absolute address or fixed relative offset to
any allocation. Not only the position of pointer and derived values cannot be predicted by
the attacker, but also the heap management structures as well for the same reason. The
problem implicitly avoided is the possibility of allocation anywhere primitives. With the
management structures being unreachable by the attacker since their location is unknown
and not in the same memory areas as the allocations. Hence to modify the heap structures,
the attacker has to have information about the address space layout and be able to perform
read and write operations at arbitrary addresses. For this reason, I argue that while the
structures would technically allow for chunks to be allocated anywhere an attacker has no
gain from using such primitive.
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Overflow detection is achieved by placing each allocation on one page as far to the back
as possible. By design the following page is a non-accessible guard page and any reading
or writing access there will abort the program. Here it is important to take minimum
alignment requirements into consideration as allocations have to sufficiently aligned for
any build in type. The last security flaw also is avoided by design. The secure heap does
not implement any hooks.

4.2 Leap

While the Secure Heap is mostly a concept to explore the possibility of techniques needed
to create a secure heap while sacrificing usability, Leap aims to be a drop-in replacement
for any heap conforming to the POSIX API. To achieve this some requirements have to be
relaxed, like not reusing memory, as this would necessary lead to exhausting the virtual
address space as discussed in the design of the Secure Heap. The second constraint relaxed
is to mark memory that is freed to be not accessible. The memory protection mechanism
in x86 and arm work only on page granularity and granting or revoking memory access
rights would also grant or revoke these for all chunks sharing the same page, and for
the special case that one of these chunks spans more than one page this would lead to
inconsistent access privileges for that chunk.

Not writing sensitive information to the chunk however is not relaxed and also infor-
mation stored in these regions of memory have to be checked to detect any alteration of
these information. This ensures not leaking the address space layout and thereby prevents
an attacker from escalating the attack surface of the program from elements on the heap to
elements in libraries. Additionally, as information cannot be altered the heap management
cannot be disrupted by an attacker that can only corrupt memory of the heap. Modification
of heap management data in the allocation regions, has to be detected by checking this
information and also requires these information to be predictable and non-ambiguous.

The Leap discerns two different types of chunks, small chunks and huge chunks. All
allocations smaller than four times the page size are served using small chunks, and all
other allocations will use huge chunks. These chunks are grouped in bins, and for small
chunks bins contain only chunks of the same size. This allows small chunks to be treated
as an array of equally sized chunks and the allocation status can be tracked using a bitmap,
as seen in figure 7. As huge chunks are individually mapped, there is not necessarily a
corelation between any two allocations, so they are just grouped together in one bin. These
bins are stored in an array. This allows for the array index to be stored with the allocation
and does not reveal the address of the bin list but only its size. Storing this information
with the allocation brings the advantage of not needing to search for the bin that owns the
allocation and is also easily checked by testing, if the chunk that is currently handled falls
into the memory range of chunks owned by the bin.

Bins of the same size are stored in a singly linked list. This simplifies finding the
right sized bin for an allocation and in multi-threaded environments also improves the
performance, as threads can lock individual bins, and other threads skip these locked
bins when trying to allocate an object. This however requires the entire heap to be locked
when changes to the linked list itself are made. These changes include creating new bins
to accommodate further allocations, or bins being destroyed, when the last chunk is freed
in the bin.

To reduce the time needed to look up the right bin on a free, the index of the bin that
served an allocation is stored in front of each chunk together with a canary. The canary
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Figure 7: Small bins manage arrays of chunks using bitmaps

Bin
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Figure 8: Huge bins group multiple individual mappings of chunks trailed by guard pages

can be used to detect buffer overruns when the attacker cannot leak it beforehand. Storing
the owning bins index next the chunk does not reveal relevant information, as it only
leaks the size of the bin list, but not its position. Leaking the position is not critical, as an
attacker can realistically guess it, or have the list grow by allocating data to force a chosen
bin to be allocated at some offset. Altering the bin index next to the chunk however could
have consequences when the bin is freed. The heap would assume, that the chunk is part
of another bin and subsequently mark a chunk of the wrong bin to be free, or in the worst
case could result in an out of bounds access of the bitmap in the other bin. For this reason,
this bin id stored next to the chunk is not to be trusted and it must be checked if the chunk
is actually at a valid address for chunks of that bin.

Algorithm 1 Algorithm to allocate a small chunk

procedure ALLOC_SMALL(size)
curBin « findAndLockN ot EmptyBinO f Size(size)
index < findAndClearFirstSetBin(cur Bin — inUseBitmap)
ret <— nthChunk(curBin, index)
if-canaryOk(ret) V —allZeored(ret)
raiseError()

release(cur Bin)
return ret
end procedure

When a new chunk is requested by the program, first the heap decides if it will be
served using a huge or a small allocation. When a huge allocation is used, the huge bin
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list is searched for a nonempty bin, enough memory to hold the chunk and meta data
is requested from the operating system. Information about the location, and size of the
mapping is stored in the huge bin together with a reference to the chunk returned, which
may reside at an arbitrary offset from the beginning of the mapping. In case of a small
allocation, the algorithm 1 is used to not only deduce the chunk that is returned, but also
to check the afore mentioned metadata. The algorithm assumes the size to be compensated
for the size granularity and the overhead introduced by the chunk header. First a bin has
to be found that isn’t empty or currently used by another thread to allocate or free some
chunk. Then the first set bit in the bitmap, holding information about the allocation state,
is searched and cleared. This makes the allocation visible for threads querying the bitmap
in the future. Then the chunk is checked to be in the state the heap expects it to be. The
canary and the bin id have to be correct and the user data area has to be zeroed out. When
these checks are passed, the bin is released and the chunk is returned to the caller.

Algorithm 2 Algorithm used to free a small chunk

procedure FREE_SMALL(chunk)
bin < chunk — bin
index < getIndex(bin, chunk)
if-addressValid(bin, chunk) V —canaryOk(chunk)
raiseError()

clearU ser Data(chunk)

lock(bin)

if—isFree(bin,index)
raiseError()

setBit(cur Bin = inU se Bitmap, index)
release(bin)
end procedure

Algorithm 2 shows the procedure for freeing a chunk and sanitizing the bin id. When
a chunk is freed, the bin id and canary are extracted from the chunk header are extracted.
Before any further action is performed on the chunk, the bin ids validity has to be checked
first. To do this, not only a range check is performed, to see if the chunk falls into the
address range handled by the bin, but also the chunk has to be at an address, chunks from
that bin can start. If it is a valid chunk start, the chunk address minus the arrays base must
divide the element size without remainder. The next step in checking the chunks header is
to check the canary. In the current implementation, there only exists one global canary. If
the value stored in the field differs from that canary, an error is raised and the program
is terminated. After the chunk header has been validated, the user data portion of the
chunk is cleared by overwriting it with Zeros. The idea is to not only bring the chunks
content into a predictable state that can be checked on allocation, but also to destroy the
data stored. Apart from reducing the risk of information leaks from access to uninitialized
objects, this also aims at having the program fail faster in case of dangling pointer. As
soon as the program tries to dereference a pointer stored inside an object that has been
freed, the system will raise a segmentation fault. The reason for this is, that by overwriting
the data of the chunk the pointer now points to the NULL address, that is never mapped on
a modern Linux system.
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5 Implementation

Before going over important parts of the heaps implementation, some general difficulties
are addressed and how they are solved by this implementation of the heap. While the first
difficulty is obvious, the circumstances it can occur under may not be so obvious. The
problem are cyclic dependencies, specifically some functionality part of the allocation to
depend on itself. The not so obvious problem here is, when using external functions, like
pthread mutex_init may do calls to the dynamic memory allocator, such asmalloc, under
some circumstances. If such function would be called in the context of creating a bin for
chunks of size z, this creates an infinite recursion if pthread mutex_init, trys to allocate a
chunk of that size. For this reason the usage of external function is kept to a minimum and
locking is implemented by the library as well, instead of using pthread mutext_t.

The second problem stems from the loading process of dynamic libraries. Shared
libraries may need to be initialized and that can be done using constructors. These con-
structors are functions called by the loader once the library has been mapped into memory
and usually are used to initialize the library. This initialization however could need dy-
namic memory and thus try to allocate some. While this would be fine under normal
circumstances, but when the dynamic memory allocator also depends on initialization via
constructors, these constructors could be called in the wrong order and the heap may not
be initialized when the other library tries to allocate memory. This problem is avoided by
not depending on a constructor to initialize the library, but rather initializing it lazy. This
means the heap is not initialized until the first call to an allocation function.

One of the problems many dynamic memory allocators face is the reliance on dynamic
memory by themselves. The length of free lists in the case of ptmalloc grows linearly
with the number of free objects and jemalloc relies on supplementary bit vectors to hold
information about each run and their regions. These two allocators solve the problem by
using memory mapped to serve allocations in a dual manner. Ptmalloc stores its linked
lists managing free chunks in these chunks themselves. While jemalloc does not have
memory potentially returned to the program in a dual use, it reserves a sufficient amount
of space in the beginning of each memory region.

The dynamic memory allocators proposed in this thesis however do not store any
data apart from a canary and a hint in any memory mapping that is meant to serve user
allocations. These allocators therefore require additional infrastructure to accommodate
growing data required to manage additional memory. For this reason, Leap uses a nested
allocator design, where the allocator visible to the program is supported by a second one
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private to the library. Strict segregation of user allocations and internal allocations allow
the constraints for this internal heap to be relaxed. This allows this internal allocator to
intersperse allocation and management data, and thus enables the heap to utilize a free
list style design, like ptmalloc where the management data naturally grows with the size
of the heap.

struct trusted_area {
uint8_t xbegin;
uint8_t xcur;
uint8_t xend;
struct trusted_area =xnxt;

Listing 8: Struct to store information about areas owned by the internal allocator

This internal allocator, called trusted allocator, manages larger areas of memory, called
trusted_area. Each of these areas starts with a common header, which can be seen in
listing 8. Stored in this header are all necessary information to deallocate it and split of
memory in case it is not fully allocated yet. The field cur holds a pointer to the lowest
address that is neither allocated nor part of a free list, covered later. In case the free list
is empty this pointer is used to allocate objects from the arenas end. The third field of
the trusted_area is a pointer, pointing to the first address past the memory mapping.
This pointer is used to determine the size total size, but also the size left of the memory
area. There are two useful other options to store the size. Either the total size of the area
could be saved there, or the remaining size could be saved. To deduce the total size from
the remaining size, first the used size would have to be calculated from the base pointer
and the cur pointer, then the two sizes could be added. This would arguably not add
measurable overhead, as the total size is only needed when the area is freed. When objects
are allocated using the cur pointer, this would save one pointer subtraction, but add
writing to one additional memory cell, as the end pointer does not need to be updated.
The other option, storing the total size would not yield a benefit either, as the remaining
size would have to be calculated each time requiring pointer subtraction as well.

struct used.area {
size_t size;
uint8_t datal[];
} PACKED;

struct free_area {
size_t size;
struct free_area x*nxt;

35| } PACKED;

Listing 9: Structs used by the internal allocator to manage allocated and free chunks

When a bin is destroyed, its bitmap must be freed as well. This can result in arbitrary
ranges of the area used by the trusted allocator to be freed. The internal heap keeps track of
these regions and also these that are in use by utilizing the structures seen in listing 9. Both
structs are meant to be placed such that the size field precedes the allocation followed
by either the data or a pointer to the next free region. Ideally both structs would be
combined in a union, but variable length arrays are only allowed as the last field of a
struct. Unfortunately, having such variable length members inside a union would lead to
an incomplete type error. To mitigate this, both structs are marked as packed, telling the
compiler to not add padding to the struct and thus arranges these structs such that data is
at the same offset as nxt.
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struct bin {
enum bin_type type;
void xdata;
// index of mext bin. Not using pointers enables resizing by remapping
size_t nxt;
/% *
* the union ensures that all bin types have the same size,
* so it can be efficiently allocated as an area with different
* bin types interleaved
*/
union {
struct small_bin {
lock_t lock ACQUIRED_AFTER(core_lock);
uint64_t xin_use GUARDEDBY(this—lock);
uint32_t esize;
uint32_t nelem;
size_t first_free GUARDEDBY(this—>lock);
size_t free_eles GUARDEDBY(this—>lock);
} small;
struct huge_bin {
lock_t lock ACQUIRED_AFTER(core_lock);
size_t nentry;
size_t nfree GUARDEDBY(this—>lock);
struct huge_allocation xallocs GUARDEDBY(this—lock);
} huge;
} detail;

5| 1

Listing 10: The struct bin used to manage groups of objects in bin.h

To serve the programs allocations a different allocator is used. It manages arrays of
same sized chunks using struct bin. All bins handling chunks of the same size form a
linked list, with the list head being part of the global data of Leap. This list however does
not use pointer to indicate the next element, but rather an index. This can be done since
bins not only form a linked list, but also an array that is contained by an individual memory
mapping. This, together with not using pointer to link the individual elements allows for
efficient resizing the array of bins and thus allocation of new bin structs. Reallocation is
done via remapping the memory so that the array can grow or shrink. The field storing
the index of the next list element is named nxt.

The type field is used to distinguish between the different of bins. As mentioned
when describing the design of Leap in section 4.2, there are two different bin types, small
and huge. The field type can also hold two different values. The first other value is
BIN_TYPE_FREE and indicates, that the element is currently not used and part of a free list
of bins. When a new bin is required the first element of this bin free list is taken and the
bin indexed by nxt becomes the new list head. The other value is BIN.TYPE_NONE and is
used to indicate that this element of the bins array has not been used yet. This enables the
elements of the bin array to be initialized lazy. A dedicated value indicating that the bin
has not been initialized yet is necessary because the memory returned when pages are
mapped into memory is defined to be zeroed out. If there was only one value to indicate a
free element, this would that, either all bins had to be initialized, or the nxt field is not
suitable to hold the free list.

What element of the union detail is used depends on the type field. Managing small
and huge bins in the same struct using a union results in the management structures for
both bin types to be of the same size. This makes storing these bins as an array simple, not
requiring pointer arithmetic. Both, the small and the huge bins contain a 1ock inside their
detail structures. These locks are placed there to enable clangs static thread safety analysis
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on the code. Placing them in the parent struct has the result, that in the specialized structs
attributes, such as GUARDED BY (this->lock) would be illegal, as this would reference the
detail struct and not the struct bin.

For the small bin, esize holds the size of each chunk, including the chunk header. The
field nelem stores the total amount of elements held by the bin. These numbers are used to
calculate the size of the memory mapped region if the bin is to be destroyed. The number
of free chunks in this bin are stored in the free_eles field. A bitmap allocated using the
internal allocator is used to keep track of the allocation state of the individual chunks. For
fast access to this bitmap first_free holds the smallest index a free chunk can occur at. It
is updated when a chunk is freed, and the chunks index is smaller than first_free, or
when an element is allocated. The bitmap itself is stored in the in_use field.

3| struct huge_allocation {

void xbase;
struct chunk schunk_ptr;
size_t size;

}s

Listing 11: The huge_allocation struct is used to manage allocations larger than four times the page size

When more the four pages worth of memory is requested in a single allocation, it is
handled using a huge bin. These allocations are served by mapping the requested amount
of memory followed by the guard page. The operating system chooses the virtual address
the memory will be mapped at, so each of these huge allocations must be managed individ-
ually. The structure that does so is called huge_allocation and stores the address returned
by the operating system in base, and the size in size. Huge allocations are also preceded
by the chunk header, which is placed into memory, so that the allocation is aligned to the
size of a cache line or a specified alignment in cases of aligned_alloc or posix_memalign.
To be able to handle this non constant offset into the mapping, the chunk_ptr is used. One
huge bin doesn’t store just one, but an array of these huge allocations in the allocs field.
Like the free_eles variable in the small bins context, nfree keeps track of the number
of free entries in the allocs array. The last field, nentry holds the amount of entries the
allocs consists of.

Huge bins are also utilized to handle allocations requesting special alignment. While
chunks are naturally aligned to some degree, some operations require alignment to larger
powers of two. Vectorized instructions of the x86_64 Instruction Set Architecture for
example include the MOVDIR64B instruction requiring 64 bit of alignment. To ensure such
instruction can be used the program can request specifically aligned memory. To serve
these allocations, the alignment requirement is added to the size of the allocation when
doing the huge allocation. This ensures, that at least one address within the allocation
is a multiple of the alignment and is followed by enough memory to serve the request.
Before this huge allocation is returned to the program however, the chunk pointer has
to be adjusted to this address, so that the allocation does not only contain an address
sufficiently aligned, but starts at one.

struct chunk {
uint64_t canarie_bin_id;
uint8_t datal];

71}

Listing 12: Structure containing user allocations in bin.h

To associate each chunk with its bin, every allocation is handled by the struct chunk.
It has only two fields, with data, the second, variable size field, containing the user data
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that can be stored in the chunk. The other field canarie_bin_id serves two purposes.
It holds a canary, a random value generated at runtime that is meant to detect buffer
overflows. In the current implementation, this canary is the same for all chunks of one bin.

The second piece of information it holds is the index of the struct bin managing this
chunk.
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6 Evaluation

This section evaluates our work. In the following we will conduct benchmarks to estimate
applicability of our work to real-world problems.

To generate reproducible benchmarks, the same computer has been used to perform
the benchmarks. This computer is equipped with a solid-state drive and has an Intel Core
i7 6700 clocked at 3.4 GHz with four cores and 8 threads as the CPU. The underlying
operating system is Debian stretch. To evaluate the performance of leap, two different
benchmarks are used testing the performance of dynamic memory allocators in different
scenarios. Jemalloc and ptmalloc are also tested using the same computer and benchmark.
The first benchmark, called Super Smack®, performs a stress test selecting and updating
rows in a 90,000 element sized PostgreSQL database. While the amount of queries each
client performs is fixed, the number of threads attempting queries in parallel is increased in
steps of five. Figure 9 shows the results from this benchmark. All three allocators perform
similar, with the number of queries per second first steeply rising. Then the performance
levels off at around 20 threads before slowly declining until they stabilize around 26000 of
jemalloc and ptmalloc and 22000 for leap respectively. The relative performance of Leap
to Ptmalloc starts with 90 percent at 5 threads and drops to 77 percent at 40 threads. After
that it climbs back to 84 percent at 85 threads where it remains steady for the last tests.
The average performance is 83 percent of ptmalloc.

The second benchmark is not a real server but aims to simulate one. It utilizes multiple
threads where allocated objects are passed between threads and each thread randomly
frees some objects and allocate new ones to take their place. This resembles a realistic
workload in the context of multithreaded servers[19]. In this benchmark the number of
allocation and deallocation units is increased in each step while the runtime of ten seconds
remains constant. Here ptmalloc and jemalloc perform similar with regards to the curve
that is formed, namely first improving the performance until four units are used, then the
performance drops back to the single performance for ptmalloc and slowly but steadily
decreases for jemalloc. Interestingly the performance of Leap is almost constant over the
entire range of units.

Both benchmarks also are used to determine the performance of SuperMalloc[17],
a memory allocator that has some similarities with jemalloc and makes heavy use of
hardware transactional memory.

*https:/ / github.com /winebarrel / super-smack
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Figure 9: Super smack benchmark stress testing postgresql with different heap implementations
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Figure 10: The Mallo-test benchmark tests a producer consumer scenario, where the allocation and
deallocation of objects is done in different threads
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7 Discussion

After describing work related to this thesis, possible improvements of the Leap dynamic
memory allocator are outlined. Then this section is finished by drawing a conclusion on
the applicability of the heap designed in this thesis.

7.1 Related Work

There is a substantial amount of different work done towards overflow prevention and
detection. The class of overflow detection can be further divided into approaches preventing
the memory corruption to appear and approaches detecting the symptoms of memory
corruptions after their occurrence. Control-flow integrity falls into the latter category:
By calculating all possible control flow transfers and thus creating a control flow graph
(CFG), it can detect attacks that alter the control flow and take branches unfeasible in the
original program. This effectively detects attacks using return-oriented programing (ROP)
or counterfeit object oriented (COOP) programming. By design such approaches can not
protect against attacks that stay within the allowed CFG [1]. Unfortunately exploiting
structures of the dynamic memory allocator does not violate any constraints imposed on
the control flow.

Furthermore, enforcing control flow integrity comes at a (sometimes) significant per-
formance cost and thus different solutions with a varying degree of relaxation have been
published. They can be divided into coarse grained CFI [33, 34], and fine grained CFI [31,
21, 22] approaches. The difference between fine and coarse grained CFI is the amount
of overapproximatiion done when constructing the CFG. Unfortunately, constructing a
precise CFG depends on a precise points to analysis which is undecidable [27]. It has been
shown that even when the execution path is constrained to follow a valid path of such
control flow graph, exploitation can still be successful [13].

StackGuard [10] can also be counted towards CFI enforcement. It works by placing a
secret value in front of the return address, and when an attacker attempts to overwrite the
return address saved on the stack, he has to also overwrite this secret value. This modifica-
tion can be detected before the return address is read back from the architectural stack
and instead of jumping to a (potentially) attacker-defined location, program execution is
terminated. This technique, while only introducing minute runtime and memory overhead
only detects stack based, continuous buffer overruns. Attackers who can access an array
on the stack out of its bounds could skip this secret value and change the return undress

34



7.1 Related Work

without alerting the detection mechanism. This secret value also has a disadvantage when
the attacker is able to leak it, due to it being constant for a given run. The value can not only
be leaked directly by printing, but also indirectly by guessing it step by step. This does
however only work if the program creates a new process with the memory being cloned,
like it is done in the link system call fork. In this cases it is impossible to re-randomize
the secret value since the old value may be already used to protect some return address
further down on the stack.

While both, the dynamic memory allocator and enforcing the integrity of the control
flow have the goal of reducing the effective attack surface, the methodology of both
approaches is fundamentally different. The secure heap and Leap both try to reduce the
attack surface by moving interesting attack targets to memory locations that are more
difficult to reach and removing mechanics that are prone to exploitation. Control flow
integrity techniques, on the other hand, try to achieve the same by guarding these sensitive
variables and mechanics. Similar to Leap, there are also attempts made to remove sensitive
information from the stack. In case of the shadow stack protection mechanism, control
structures like stack frame information and return pointers are saved on a secondary stack.

While control flow integrity does guard control structures, it does not prevent the
memory corruption but rather detects it. There are other approaches that do not target
these control structures specifically but try to detect overflows and access violations more
generally. The solutions providing overflow detection differ in their goal and the kind of
overflow detected. LibsafePlus [5] for example has the goal to detect stack based buffer
overflows that would corrupt return or frame pointer. This is done by first gathering
information about buffers in the original program, that has to be compiled with debug
information. The gathered information are then added to the executable via binary rewrit-
ing. When the program is executed, LibsafePlus is preloaded into the memory and installs
wrapper functions that intercept calls to dangerous library functions, such as strcpy. To
prevent buffer overruns, the buffer sizes are compared, and the program is terminated
when it attempts to write out of bounds. The sizes of stack buffers are overestimated to
reach to the end of the stack frame which is determined by the frame pointer. For buffers
on the heap, a red black tree is maintained containing the base addresses and sizes of all
dynamic memory allocations [5]. A similar technique has been implemented by Lhee and
Chapin that uses a modified compiler instead of extracting buffer information from debug
information [20]. A drawback of this approach is the limited scope: Buffer overflows are
only detected when library functions are used to overflow. Also, programs may have to be
recompiled to use these techniques which requires the presence of source code.

While these schemes aim to protect valuable information and control structures on
the program stack other solutions have been developed specifically hardening dynamic
memory allocators. One such technique follows the same principles as StackGuard aug-
menting the chunk header of dlmalloc, a predecessor of ptmalloc, with a canary. This
canary guards the size fields by hashing them using a global secret and adding that value
to the chunk structure [28]. While this canary can protect from continuous overflows, it
can be defeated in multiple ways: First, the canary is only checked when a heap operation
is performed, which renders exploits that overflow this canary undetected until the victim
chunk is passed to a heap management function. This point is not necessarily reached
during exploitation [24]. Also, only the size fields are checked accessing arrays out of their
bounds gives a read or write relative to the arrays base and such overwriting the canary
can be skipped and the linked list be corrupted. Stage one of such an exploit is sketched in
section 3.2.

35



7.2 Future Work

Building on the insufficiency of canaries and separation of heap meta data from the
allocation regions DieHarder[24] has been developed on the base of the DieHard[6] heap.
DieHard takes a probabilistic approach to memory safety that tries to approximate a
Heap similar to the Secure heap described in this thesis. Objects are placed at a random
relative offset. Additionally, the program can be executed multiple times in parallel,
with each instance other than the first one being a replica. The output from all replicas
are compared and when the output deviates, DieHard decides which output shall be
forwarded. Each replica not conforming to this output is terminated as this deviation
indicates an error. DieHarder extends this implementation in terms of security by being
less forgiving and also applying a sparser memory usage increasing the probability of
buffer overflow exploits hitting an unmapped page. This technique significantly improves
resistance against heap spray attacks, where a large amount of allocations and overflows
are used to mitigate an unpredictable heap state.

A more general approach is taken by CRED [29] that introduces bound checking for
buffers via binary instrumentation. This allows CRED to detect buffer overruns not only
when a C library function is called. Unfortunately, this comes at a substantial performance
overhead. While cred checks buffer accesses at runtime, another technique has been de-
scribed that ensures memory safety of C programs via source code transformations [32].
Transforming programs written in C into memory safe programs unfortunately comes at
a huge run time penalty for both static transformation and instrumentation. The perfor-
mance overhead is larger than 100 percent in many cases. Source code transformation also
is not always applicable as third party libraries may only be shipped in a binary format.

To counteract this performance deficit, Kurznetsov et al. proposed to only protect
pointers that are important to the control flow. They propose to detect these pointer via
static analysis at compile time with the is sensitive property being transitive. This means,
not only those pointers are sensitive that directly impact the control flow, but also those
that might point to sensitive pointers. All those sensitive pointers are then aggregated
and stored in a separate section of the program that is not directly referenced or accessed.
On x86 accessing this section is done vie dedicated segment registers and on x86_64, with
these segment registers not being available any more, an indirection via special stubs is
done. This concept has been named Control pointer integrity (CPI) and adds a runtime
overhead of about 8 percent. Dropping the transitivity when sensitive pointers are detected
reduces this approach to code pointer separation (CPS) reducing the overhead to two
percent [18].

7.2 Future Work

There are many aspects of Leap that can be improved upon. The main goal of Leap was
to reduce the attack surface provided by the management structures and to see if and
what kind of information can be allowed to reside in the same memory mappings as the
allocations handed to the program. While exploiting these structures to gain overlapping
chunks or allocations at arbitrary locations is not realistically any more as an attacker
capable enough to perform these attacks could corrupt the target memory locations
directly. The next step in improving the security would be to protect the allocated objects
themselves. To achieve this, the chunk returned on allocation could be randomized to
force an attacker to either guess correctly or spray the heap and overflow repeatedly. To
mitigate the first scenario, the randomization has to have a sufficient amount of entropy, to
make such an attack impractical. The second scenario relies on detecting the attack as it is
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going on. A probabilistic approach could be taken here as well by reducing the bin’s size.
This would increase the number of allocations followed by non accessible memory and
thus also increase the probability of accidentally overflowing into this non accessible area.
Another possibility would be to randomly check foreign chunks for corruption when any
function of the dynamic memory allocator is invoked. An improvement to that would be
to have a dedicated thread checking each chunk header periodically in an asynchronous
manner.

Not only the security of the Leap can be improved, but also its performance. Here
different strategies could be tested. First, instead of one lock per bin, the total amount
of locks could be reduced to one lock per linked list (chain) of bins. On first glance,
this would increase the amount of contention on the lock. This can be counteracted by
allowing multiple chains for the same bin size. In the current implementation all bins
of the same size are put into the same linked list. Associating threads or even CPUs to
a chain similar to how arenas are associated to threads in jemalloc could counteract this
increase in contention. Binding chains to a CPU on the other hand has the advantage that
cache performance could improve as the locks are not cached in different cores, overhead
required to keep the caches consistent could be avoided. Coincidently this overhead is
what makes locking instructions expensive in terms of runtime overhead[17].

Not only the runtime performance can be improved, but also the memory usage. The
current implementation allows for a vast amount of different bin sizes which results in
less space being wasted behind the object but when only few objects of a specific size are
needed, the entire rest of the bin will stay unused. To reduce this issues of underutilizing
the bins, the amount of space left free in the chunk could be approximated by a linear
function. This would allow to use less bins to manage a larger number of chunks with
a greater range of sizes. Reducing the number of bins could also reduce the overhead
from mapping memory for the bins created as less bins would be needed. Second, the
way aligned allocations are performed could be improved to not require huge allocations.
Using masks on the bit vectors in bins could be used to filter out all chunks that are not
suitably aligned with linear performance overhead with respect to the bit vectors length.

Another subject for investigation comes from the benchmark itself. Here it is very
surprising how jemalloc dominated the microbenchmark where allocations and frees
are done in a close loop but had no significant advantage over ptmalloc when testing
the PostgreSQL server using Super Smack. To explain the huge difference between the
results of both benchmarks, allocations and deallocations should be recorded for various
programs to detect patterns. This could lead to heap implementations that adapt to
programs on the fly when such pattern is detected. Adapting to the special needs of
specific programs could yield substantial improvement of the allocation performance.

7.3 Conclusion

Memory corruptions are one of the basic exploitation mechanics and are a persistent
problem dating back more than two decades to Aleph One’s iconic work “Smashing the
Stack for fun and profit”[2]. Since then the technology has improved in many ways,
not only became processors faster, but also many security mechanisms were added.
Nowadays memory pages can have access permissions, preventing the execution of
Data or modification of code. The address space layout is randomized to make attacks that
rely on guessing any address inevitable. To further protect return addresses and frame
pointers randomized canary values have been widely adopted. All these improvements
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7.3 Conclusion

work together to minimize the threat of memory corruptions, that can only occur because
the languages used until today, such as C and C++, are not inherently memory safe. While
it is not feasible and maybe even not possible to port all existing programs to some safe
language, such languages should be avoided in new projects.

In order to mitigate the potential damage of attacks involving memory corruptions
there are two basic principles that can be followed. First, attempts could be made to
detect these corruptions. A primary example here is StackGuard. Buffer overflows have
to overwrite a secret value in order to also overwrite the return address on the stack.
This secret value is checked before the return address is used. The chances of guessing
the secret value are small and thus an attacker not knowing this secret only has minute
chances of succeeding with exploitation. Another way to foil attacks involving memory
corruption is to place structures that are important in places that can not be reached by the
attack. Here the separation of local variables and return addresses using a shadow stack
are one example, CPI another.

The goal of this thesis was to analyze currently used heap implementations and to
identify weaknesses in their management routines and structures. It has been shown
that current popular implementations of dynamic memory allocators provide insufficient
security. Storing metadata in places an attacker can predict, such as keeping free lists in the
free elements themselves or having a block of meta data in front of jemalloc’s chunks can be
used to leak information and to increase the attack surface. This thesis provides evidence
that when meta data is stored along with the allocations, integrity of such meta data has
to be easily verifiable and should not leak sensitive information, such as virtual memory
addresses. Building on this principle, we designed and implemented a new dynamic
memory allocator: the Leap. While it can not yet directly compete performance-wise
with ptmalloc and jemalloc in real world scenarios, it is not too far off, and is even able
to perform better then ptmalloc in some cases. With the current implementation of Leap
only being a prototype, it is possible that it can be improved to match the performance of
the other allocators more closely. Last, I want to argue that the default dynamic memory
allocator in the C library should put emphasis on safety as it will be used by many different
programmers with varying levels of skill. With buffer overflows still being an important
threat, it can be concluded that correct memory management is not easy. The heap is one
of the central elements of memory management and therefore should conform to a high
standard of safety.
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Appendix

The program used to simulate an attacker with different capabilities, but full access to the
heap API and full control over an objects content

Gl W N =

a1 QDN = O ™ N

NN NN NN NNN
8 N Rt

3]

2

30

36

#define _POSIX_.C_SOURCE 200112L
#define _ISOC11_SOURCE

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/types.h>

#define NUMBUCKEIS 100

3| typedef struct note_s {

char xtext;

size_t len;

struct note_s x*next;
} note;

note notes [NUMBUCKEIS];
note xfree_notes = notes;
note xback = &notes [NUMBUCKEIS];

void init() {
// setting stdout and stdin to be unbuffered
setvbuf (stdout ,0,_.IONBF,0) ;
setvbuf (stdin ,0, IONBF,0) ;

}

unsigned long readlong() {
char buf[40];
char stmp;
unsigned long ret;
ssize_t len;
len = read (0, buf, sizeof(buf) — 1);
if (len <= 0)
exit (0);
buf[len] = 0;
ret = strtoul (buf, &mp, 0);
if (tmp == buf) {
puts ( )
exit(1);
}

return ret;

}

void print.menu () {
puts ( );
puts ( );
puts ( )
puts ( );
puts ( )
puts ( );
puts ( );
puts ( )
puts ( )
}

unsigned long long getull (char xtext) {
char buf[0x20];
size_t len;
printf( , text);
len = read (0, buf, sizeof(buf) — 1);
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63 buf[len] = 0;

64 return strtoull (buf, NULL, 0);

65| }

66

67| void perform_malloc () {

68 size_t index, len;

69 if (free_notes == back) {

70 puts( );
71 return;

73 index = free_notes — notes;

74

75 len = getull( );

76 // TODO replace if mneeded

77 free_notes—>text = malloc(len);

78 free_notes—>len = len;

79

80 fprintf (stderr, , len, free_notes—>text);
81 printf( , index);

82

33 if (free_notes—>next == NULL)

84 free_notes++;

85 else

86 free_notes = free_notes—>next;

87| }

88

89| void perform_realloc() {

9 char xold;

91 size_t len, index;

»

93 index = getull( );

94 if (index >= NUMBUCKEIS || notes[index].text == NULL) {
95 puts ( );

96 return;

97 }

98

99 len = getull( );

100 // TODO replace if needed

101 notes[index]. text = realloc((old = notes[index]. text), len);
102 notes[index].len = len;

103

104 fprintf (stderr, , old, len, notes[index]. text);
105 puts ( )

106] }

107

108| void perform_free() {

109 size_t index;

110

111 index = getull( )

112 if (index >= NUMBUCKEIS || notes[index].text == NULL) {
113 puts( ),

114 return;

115 }

116

117 // TODO replace if needed

118 free (notes[index]. text);

119 fprintf (stderr, , notes[index]. text);
120 puts( )

121

122 notes[index]. text = NULL;

123 notes[index ].next = free_notes;

124 free_notes = &notes[index];

125 }

126

127| void perform_calloc() {

128 size_t index, len, nmemb;

129 if (free_notes == back) {

130 puts ( );




154

156
157
158
159
160
161
162
163
164
165
166

167

168
169
170

return;

}

index = free_notes — notes;
nmemb = getull( );
len = getull( );

// TODO replace if needed
free_notes—>text = calloc (nmemb, len);
if (free_notes—>text != NULL)
free_notes—>len = len % nmemb;

fprintf (stderr, , nmemb, len, free_notes—>text);

printf( , index);

if (free_notes—>next == NULL)
free_notes++;

else
free_notes = free_notes—>next;

}

void perform_aligned_alloc() {
size_t index, alignment, len;

if (free_notes == back) {
puts ( );
return;
}
index = free_notes — notes;
len = getull( );
alignment = getull( )
len = getull( );
// TODO replace if needed
free_notes —>text = aligned_alloc(alignment, len);
free_notes—>len = len;
fprintf (stderr, , alignment,
text);
printf( , index);

if (free_notes—>next == NULL)
free_notes++;

else
free_notes = free_notes—>next;
}
void perform_posix_-memalign () {
int ret;
size_t index, len, alignment;
if (free_notes == back) {
puts );
return;
}
index = free_notes — notes;
alignment = getull( )
len = getull( );
// TODO replace if needed
ret = posix-memalign ((void *%) &(notes[index].text), alignment,
fprintf (stderr, , (void
text, alignment, len, ret);
if (free_notes—>next == NULL)
free_notes++;
else
free_notes = free_notes—>next;
puts( );
}

len, free_notes—>

len);
*) &notes[index].
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197
198
199
200
201
202

240

void perform_read () {
char *buf;
size_t len, ret, tmp, index;

index = getull( );

if (index >= NUMBUCKEIS || notes[index]. text
puts( );
return;

}

buf = notes[index]. text;

s| #ifdef OVOFFSET

buf += getull( );
#endif
len = getull( );

#ifdef OVLEN
if (notes[index].len + OVLEN < len) {

puts( )
return;
}
s| #endif
ret = 0;
do {

tmp = read (0, buf + ret, len — ret);
if (tmp == 0) {
perror ( ),
exit(1);
}
ret += tmp;
} while (ret < len);

#ifdef ADDNULL
buf[len] = 0;

puts ( )
#endif
fprintf (stderr, , buf,
for (size_t i = 0; i < len; i++) {
fprintf (stderr, , buf[i]);
fprintf (stderr, );
puts ( );

}

void perform_write () {
char *buf;
size_t len, index;

index = getull( ),

if (index >= NUMBUCKEIS || notes[index]. tex
puts( );
return;

}

buf = notes[index]. text;
#ifdef OVOFFSET

buf += getull( );
#endif
len = getull( );
#ifdef RDLEN
if (notes[index].len + RDLEN < len) {
puts ( );
return;
#endif

== NULL) {

len);

== NULL) {
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265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321

write (0, buf, len);

fprintf (stderr, , buf,
for (size_t i = 0; i < len; i++) {
fprintf (stderr, , buf[i]);

fprintf (stderr, );

}

void perform_exit() -_attribute__((noreturn));
void perform_exit() {
exit(0);

int main () {
unsigned long long choice;

setbuf (stdout, NULL);
setbuf (stdin, NULL);

print_menu (1) ;
while (1) {

choice = getull( );

switch (choice) {

case 1:
perform_malloc () ;
break;

case 2:
perform_realloc();
break;

case 3:
perform_free();
break;

case 4:
perform_calloc () ;
break;

case 5:
perform_aligned_alloc () ;
break;

case 6:
perform_posix_memalign () ;
break;

case 7:
perform_read () ;
break;

case 8:
perform_write () ;
break;

case 9:
perform_exit () ;
break;

default:
print_menu () ;
break;

len);
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